Yolov8标签匹配算法TaskAlignedAssigner原理及代码注解-程序员宅基地

技术标签: YOLO  算法  目标检测标签匹配算法  

1. TaskAlignedAssigner简介

        TaskAlignedAssigner 的匹配策略简单总结为:根据分类与回归的分数加权的分数选择正样本

        (1) 计算真实框和预测框的匹配程度。
a l i g n _ m e t r i c = s α ∗ u β align\_metric= s ^\alpha *u^\beta align_metric=sαuβ        其中, s {s} s是预测类别分值, u {u} u是预测框和真实框的ciou值, α \alpha α β \beta β为权重超参数,两者相乘就可以衡量匹配程度,当分类的分值越高且ciou越高时, a l i g n _ m e t r i c {align\_metric} align_metric的值就越接近于1,此时预测框就与真实框越匹配,就越符合正样本的标准。

        (2) 对于每个真实框,直接对 a l i g n _ m e t r i c {align\_metric} align_metric匹配程度排序,选取topK个预测框作为正样本。

        (3)对一个预测框与多个真实框匹配测情况进行处理,保留ciou值最大的真实框。

2. 代码及注释


import torch # pytorch的版本最低为 1.10
import torch.nn as nn
import torch.nn.functional as F
import math

def select_candidates_in_gts(xy_centers, gt_bboxes, eps=1e-9):
    """select the positive anchor center in gt

    Args:
        xy_centers (Tensor): shape(h*w, 2)
        gt_bboxes (Tensor): shape(b, n_boxes, 4)
    Return:
        (Tensor): shape(b, n_boxes, h*w)
    """
    n_anchors = xy_centers.shape[0]
    bs, n_boxes, _ = gt_bboxes.shape

    lt, rb = gt_bboxes.view(-1, 1, 4).chunk(2, 2)  # left-top, right-bottom
    bbox_deltas = torch.cat((xy_centers[None] - lt, rb - xy_centers[None]), dim=2).view(bs, n_boxes, n_anchors, -1)
    # return (bbox_deltas.min(3)[0] > eps).to(gt_bboxes.dtype)
    # torch.amin(input, dim, keepdim=False, *, out=None) → Tensor 返回给定维度 dim 中 input 张量的每个切片的最小值。
    return bbox_deltas.amin(3).gt_(eps)


def select_highest_overlaps(mask_pos, overlaps, n_max_boxes):
    """if an anchor box is assigned to multiple gts,
        the one with the highest iou will be selected.

    Args:
        mask_pos (Tensor): shape(b, n_max_boxes, h*w)
        overlaps (Tensor): shape(b, n_max_boxes, h*w)
    Return:
        target_gt_idx (Tensor): shape(b, h*w)
        fg_mask (Tensor): shape(b, h*w)
        mask_pos (Tensor): shape(b, n_max_boxes, h*w)
    """
    # 一个预测框匹配真实框的个数
    # (b, n_max_boxes, h*w) -> (b, h*w)
    fg_mask = mask_pos.sum(-2)

    # 如果一个预测框匹配真实框的个数 > 1
    if fg_mask.max() > 1:  # one anchor is assigned to multiple gt_bboxes
        # 一个预测框匹配多个真实框的位置
        mask_multi_gts = (fg_mask.unsqueeze(1) > 1).repeat([1, n_max_boxes, 1])  # (b, n_max_boxes, h*w)

        # 与预测框IoU值最高的真实框的索引
        max_overlaps_idx = overlaps.argmax(1)  # (b, h*w)
        # 进行one-hot编码,与预测框IoU值最高的真实框的位置为 1 
        is_max_overlaps = F.one_hot(max_overlaps_idx, n_max_boxes)  # (b, h*w, n_max_boxes)
        is_max_overlaps = is_max_overlaps.permute(0, 2, 1).to(overlaps.dtype)  # (b, n_max_boxes, h*w)
        
        mask_pos = torch.where(mask_multi_gts, is_max_overlaps, mask_pos)  # (b, n_max_boxes, h*w)
        
        # 正样本的mask
        fg_mask = mask_pos.sum(-2)

    # 每个正样本与之匹配真实框的索引
    # find each grid serve which gt(index)
    target_gt_idx = mask_pos.argmax(-2)  # (b, h*w)

    return target_gt_idx, fg_mask, mask_pos


class TaskAlignedAssigner(nn.Module):

    def __init__(self, topk=13, num_classes=80, alpha=1.0, beta=6.0, eps=1e-9):
        super().__init__()
        self.topk = topk # 每个gt box最多选择topk个候选框作为正样本
        self.num_classes = num_classes
        self.bg_idx = num_classes
        self.alpha = alpha
        self.beta = beta
        self.eps = eps

    @torch.no_grad()
    def forward(self, pd_scores, pd_bboxes, anc_points, gt_labels, gt_bboxes, mask_gt):
        """This code referenced to
           https://github.com/Nioolek/PPYOLOE_pytorch/blob/master/ppyoloe/assigner/tal_assigner.py

        Args:
            pd_scores (Tensor): shape(bs, num_total_anchors, num_classes)
            pd_bboxes (Tensor): shape(bs, num_total_anchors, 4)
            anc_points (Tensor): shape(num_total_anchors, 2)
            gt_labels (Tensor): shape(bs, n_max_boxes, 1)
            gt_bboxes (Tensor): shape(bs, n_max_boxes, 4)
            mask_gt (Tensor): shape(bs, n_max_boxes, 1)
        Returns:
            target_labels (Tensor): shape(bs, num_total_anchors)
            target_bboxes (Tensor): shape(bs, num_total_anchors, 4)
            target_scores (Tensor): shape(bs, num_total_anchors, num_classes)
            fg_mask (Tensor): shape(bs, num_total_anchors)
        """

        # batch size 的大小
        self.bs = pd_scores.size(0)
        # 每个图片真实框个数不同,按图片中真实框最大的个数进行补零对齐。
        # n_max_boxes:最大真实框的个数
        self.n_max_boxes = gt_bboxes.size(1)

        # 如果不存在真实框,直接返回结果
        if self.n_max_boxes == 0:
            device = gt_bboxes.device
            return (torch.full_like(pd_scores[..., 0], self.bg_idx).to(device), torch.zeros_like(pd_bboxes).to(device),
                    torch.zeros_like(pd_scores).to(device), torch.zeros_like(pd_scores[..., 0]).to(device),
                    torch.zeros_like(pd_scores[..., 0]).to(device))
        
        # 真实框的mask,正负样本的匹配程度,正负样本的IoU值
        mask_pos, align_metric, overlaps = self.get_pos_mask(pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points,
                                                             mask_gt)
        # 对一个正样本匹配多个真实框的情况进行调整
        target_gt_idx, fg_mask, mask_pos = select_highest_overlaps(mask_pos, overlaps, self.n_max_boxes)

        # assigned target 
        target_labels, target_bboxes, target_scores = self.get_targets(gt_labels, gt_bboxes, target_gt_idx, fg_mask)

        # normalize
        align_metric *= mask_pos
        pos_align_metrics = align_metric.amax(axis=-1, keepdim=True)  # b, max_num_obj
        pos_overlaps = (overlaps * mask_pos).amax(axis=-1, keepdim=True)  # b, max_num_obj
        norm_align_metric = (align_metric * pos_overlaps / (pos_align_metrics + self.eps)).amax(-2).unsqueeze(-1)
        target_scores = target_scores * norm_align_metric

        return target_labels, target_bboxes, target_scores, fg_mask.bool(), target_gt_idx

    def get_pos_mask(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes, anc_points, mask_gt):

        # 预测框和真实框的匹配程度、预测框和真实框的IoU值
        # get anchor_align metric, (b, max_num_obj, h*w)
        align_metric, overlaps = self.get_box_metrics(pd_scores, pd_bboxes, gt_labels, gt_bboxes)

        # 筛选锚点在真实框内的预测框
        # get in_gts mask, (b, max_num_obj, h*w)
        mask_in_gts = select_candidates_in_gts(anc_points, gt_bboxes)

        # get topk_metric mask, (b, max_num_obj, h*w)
        # 由于为了使每张图片真实框的数量进行对齐,进行了补 0 操作,mask_gt 用于确定有效真实框
        mask_topk = self.select_topk_candidates(align_metric * mask_in_gts,
                                                topk_mask=mask_gt.repeat([1, 1, self.topk]).bool())
        
        # merge all mask to a final mask, (b, max_num_obj, h*w)
        mask_pos = mask_topk * mask_in_gts * mask_gt

        return mask_pos, align_metric, overlaps

    def get_box_metrics(self, pd_scores, pd_bboxes, gt_labels, gt_bboxes):

        ind = torch.zeros([2, self.bs, self.n_max_boxes], dtype=torch.long)  # 2, b, max_num_obj
        ind[0] = torch.arange(end=self.bs).view(-1, 1).repeat(1, self.n_max_boxes)  # b, max_num_obj
        ind[1] = gt_labels.long().squeeze(-1)  # b, max_num_obj
        # get the scores of each grid for each gt cls
        # pd_scores[ind[0]] 将每个batch的生成的预测框的重复 max_num_obj 次 size 大小变为 b*max_num_obj*num_total_anchors*num_classes
        # bbox_scores 的 size 为 b*max_num_obj*num_total_anchors,ind[1] 对类别进行得分进行选取
        bbox_scores = pd_scores[ind[0], :, ind[1]]  # b, max_num_obj, num_total_anchors

        # overlaps 的 size 为 b*max_num_obj*num_total_anchors
        # gt_bboxes.unsqueeze(2) 的 size 为 b*max_num_obj*1*4
        # pd_bboxes.unsqueeze(1) 的 size 为 b*1*num_total_anchors*4
        # bbox_iou 的计算结果 的 size 为 b*max_num_obj*num_total_anchors*1,所以进行维度的压缩
        overlaps = bbox_iou(gt_bboxes.unsqueeze(2), pd_bboxes.unsqueeze(1), xywh=False,
                            CIoU=True).squeeze(3).clamp(0)
        # 预测框和真实框的匹配程度 = 预测类别分值**alpha × 预测框和真实框的ciou值**beta
        align_metric = bbox_scores.pow(self.alpha) * overlaps.pow(self.beta)

        return align_metric, overlaps

    def select_topk_candidates(self, metrics, largest=True, topk_mask=None):
        """
        Args:
            metrics: (b, max_num_obj, h*w).
            topk_mask: (b, max_num_obj, topk) or None
        """

        num_anchors = metrics.shape[-1]  # h*w

        # 第一个值为排序的数组,第二个值为该数组中获取到的元素在原数组中的位置标号。
        topk_metrics, topk_idxs = torch.topk(metrics, self.topk, dim=-1, largest=largest)

        # 如果没有给出有效真实框的mask,通过真实框和预测框的匹配程度确定真实框的有效性
        if topk_mask is None:
            topk_mask = (topk_metrics.max(-1, keepdim=True) > self.eps).tile([1, 1, self.topk])

        # 如果真实框是无效的,将与之匹配的正样本索引值置为 0
        # (b, max_num_obj, topk)
        topk_idxs[~topk_mask] = 0

        # 将索引值进行 one-hot 编码
        is_in_topk = F.one_hot(topk_idxs, num_anchors).sum(-2)

        # 过滤无效值
        # filter invalid bboxes
        is_in_topk = torch.where(is_in_topk > 1, 0, is_in_topk)

        return is_in_topk.to(metrics.dtype)

    def get_targets(self, gt_labels, gt_bboxes, target_gt_idx, fg_mask):
        """
        Args:
            gt_labels: (b, max_num_obj, 1)
            gt_bboxes: (b, max_num_obj, 4)
            target_gt_idx: (b, h*w)
            fg_mask: (b, h*w)
        """

        # assigned target labels, (b, 1)
        batch_ind = torch.arange(end=self.bs, dtype=torch.int64, device=gt_labels.device)[..., None]
        target_gt_idx = target_gt_idx + batch_ind * self.n_max_boxes  # (b, h*w)
        target_labels = gt_labels.long().flatten()[target_gt_idx]  # (b, h*w)

        # assigned target boxes, (b, max_num_obj, 4) -> (b, h*w)
        target_bboxes = gt_bboxes.view(-1, 4)[target_gt_idx]

        # assigned target scores
        target_labels.clamp(0)
        target_scores = F.one_hot(target_labels, self.num_classes)  # (b, h*w, 80)
        fg_scores_mask = fg_mask[:, :, None].repeat(1, 1, self.num_classes)  # (b, h*w, 80)
        target_scores = torch.where(fg_scores_mask > 0, target_scores, 0)

        return target_labels, target_bboxes, target_scores
        
# IoU,GIoU,DIoU,CIoU的计算这里不作详细解释
def bbox_iou(box1, box2, xywh=True, GIoU=False, DIoU=False, CIoU=False, eps=1e-7):
    # Returns Intersection over Union (IoU) of box1(1,4) to box2(n,4)

    # Get the coordinates of bounding boxes
    if xywh:  # transform from xywh to xyxy
        (x1, y1, w1, h1), (x2, y2, w2, h2) = box1.chunk(4, -1), box2.chunk(4, -1)
        w1_, h1_, w2_, h2_ = w1 / 2, h1 / 2, w2 / 2, h2 / 2
        b1_x1, b1_x2, b1_y1, b1_y2 = x1 - w1_, x1 + w1_, y1 - h1_, y1 + h1_
        b2_x1, b2_x2, b2_y1, b2_y2 = x2 - w2_, x2 + w2_, y2 - h2_, y2 + h2_
    else:  # x1, y1, x2, y2 = box1
        b1_x1, b1_y1, b1_x2, b1_y2 = box1.chunk(4, -1)
        b2_x1, b2_y1, b2_x2, b2_y2 = box2.chunk(4, -1)
        w1, h1 = b1_x2 - b1_x1, b1_y2 - b1_y1 + eps
        w2, h2 = b2_x2 - b2_x1, b2_y2 - b2_y1 + eps

    # Intersection area
    inter = (b1_x2.minimum(b2_x2) - b1_x1.maximum(b2_x1)).clamp(0) * \
            (b1_y2.minimum(b2_y2) - b1_y1.maximum(b2_y1)).clamp(0)

    # Union Area
    union = w1 * h1 + w2 * h2 - inter + eps

    # IoU
    iou = inter / union
    if CIoU or DIoU or GIoU:
        cw = b1_x2.maximum(b2_x2) - b1_x1.minimum(b2_x1)  # convex (smallest enclosing box) width
        ch = b1_y2.maximum(b2_y2) - b1_y1.minimum(b2_y1)  # convex height
        if CIoU or DIoU:  # Distance or Complete IoU https://arxiv.org/abs/1911.08287v1
            c2 = cw ** 2 + ch ** 2 + eps  # convex diagonal squared
            rho2 = ((b2_x1 + b2_x2 - b1_x1 - b1_x2) ** 2 + (b2_y1 + b2_y2 - b1_y1 - b1_y2) ** 2) / 4  # center dist ** 2
            if CIoU:  # https://github.com/Zzh-tju/DIoU-SSD-pytorch/blob/master/utils/box/box_utils.py#L47
                v = (4 / math.pi ** 2) * (torch.atan(w2 / h2) - torch.atan(w1 / h1)).pow(2)
                with torch.no_grad():
                    alpha = v / (v - iou + (1 + eps))
                return iou - (rho2 / c2 + v * alpha)  # CIoU
            return iou - rho2 / c2  # DIoU
        c_area = cw * ch + eps  # convex area
        return iou - (c_area - union) / c_area  # GIoU https://arxiv.org/pdf/1902.09630.pdf
    return iou  # IoU

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/YXD0514/article/details/132116133

智能推荐

稀疏编码的数学基础与理论分析-程序员宅基地

文章浏览阅读290次,点赞8次,收藏10次。1.背景介绍稀疏编码是一种用于处理稀疏数据的编码技术,其主要应用于信息传输、存储和处理等领域。稀疏数据是指数据中大部分元素为零或近似于零的数据,例如文本、图像、音频、视频等。稀疏编码的核心思想是将稀疏数据表示为非零元素和它们对应的位置信息,从而减少存储空间和计算复杂度。稀疏编码的研究起源于1990年代,随着大数据时代的到来,稀疏编码技术的应用范围和影响力不断扩大。目前,稀疏编码已经成为计算...

EasyGBS国标流媒体服务器GB28181国标方案安装使用文档-程序员宅基地

文章浏览阅读217次。EasyGBS - GB28181 国标方案安装使用文档下载安装包下载,正式使用需商业授权, 功能一致在线演示在线API架构图EasySIPCMSSIP 中心信令服务, 单节点, 自带一个 Redis Server, 随 EasySIPCMS 自启动, 不需要手动运行EasySIPSMSSIP 流媒体服务, 根..._easygbs-windows-2.6.0-23042316使用文档

【Web】记录巅峰极客2023 BabyURL题目复现——Jackson原生链_原生jackson 反序列化链子-程序员宅基地

文章浏览阅读1.2k次,点赞27次,收藏7次。2023巅峰极客 BabyURL之前AliyunCTF Bypassit I这题考查了这样一条链子:其实就是Jackson的原生反序列化利用今天复现的这题也是大同小异,一起来整一下。_原生jackson 反序列化链子

一文搞懂SpringCloud,详解干货,做好笔记_spring cloud-程序员宅基地

文章浏览阅读734次,点赞9次,收藏7次。微服务架构简单的说就是将单体应用进一步拆分,拆分成更小的服务,每个服务都是一个可以独立运行的项目。这么多小服务,如何管理他们?(服务治理 注册中心[服务注册 发现 剔除])这么多小服务,他们之间如何通讯?这么多小服务,客户端怎么访问他们?(网关)这么多小服务,一旦出现问题了,应该如何自处理?(容错)这么多小服务,一旦出现问题了,应该如何排错?(链路追踪)对于上面的问题,是任何一个微服务设计者都不能绕过去的,因此大部分的微服务产品都针对每一个问题提供了相应的组件来解决它们。_spring cloud

Js实现图片点击切换与轮播-程序员宅基地

文章浏览阅读5.9k次,点赞6次,收藏20次。Js实现图片点击切换与轮播图片点击切换<!DOCTYPE html><html> <head> <meta charset="UTF-8"> <title></title> <script type="text/ja..._点击图片进行轮播图切换

tensorflow-gpu版本安装教程(过程详细)_tensorflow gpu版本安装-程序员宅基地

文章浏览阅读10w+次,点赞245次,收藏1.5k次。在开始安装前,如果你的电脑装过tensorflow,请先把他们卸载干净,包括依赖的包(tensorflow-estimator、tensorboard、tensorflow、keras-applications、keras-preprocessing),不然后续安装了tensorflow-gpu可能会出现找不到cuda的问题。cuda、cudnn。..._tensorflow gpu版本安装

随便推点

物联网时代 权限滥用漏洞的攻击及防御-程序员宅基地

文章浏览阅读243次。0x00 简介权限滥用漏洞一般归类于逻辑问题,是指服务端功能开放过多或权限限制不严格,导致攻击者可以通过直接或间接调用的方式达到攻击效果。随着物联网时代的到来,这种漏洞已经屡见不鲜,各种漏洞组合利用也是千奇百怪、五花八门,这里总结漏洞是为了更好地应对和预防,如有不妥之处还请业内人士多多指教。0x01 背景2014年4月,在比特币飞涨的时代某网站曾经..._使用物联网漏洞的使用者

Visual Odometry and Depth Calculation--Epipolar Geometry--Direct Method--PnP_normalized plane coordinates-程序员宅基地

文章浏览阅读786次。A. Epipolar geometry and triangulationThe epipolar geometry mainly adopts the feature point method, such as SIFT, SURF and ORB, etc. to obtain the feature points corresponding to two frames of images. As shown in Figure 1, let the first image be ​ and th_normalized plane coordinates

开放信息抽取(OIE)系统(三)-- 第二代开放信息抽取系统(人工规则, rule-based, 先抽取关系)_语义角色增强的关系抽取-程序员宅基地

文章浏览阅读708次,点赞2次,收藏3次。开放信息抽取(OIE)系统(三)-- 第二代开放信息抽取系统(人工规则, rule-based, 先关系再实体)一.第二代开放信息抽取系统背景​ 第一代开放信息抽取系统(Open Information Extraction, OIE, learning-based, 自学习, 先抽取实体)通常抽取大量冗余信息,为了消除这些冗余信息,诞生了第二代开放信息抽取系统。二.第二代开放信息抽取系统历史第二代开放信息抽取系统着眼于解决第一代系统的三大问题: 大量非信息性提取(即省略关键信息的提取)、_语义角色增强的关系抽取

10个顶尖响应式HTML5网页_html欢迎页面-程序员宅基地

文章浏览阅读1.1w次,点赞6次,收藏51次。快速完成网页设计,10个顶尖响应式HTML5网页模板助你一臂之力为了寻找一个优质的网页模板,网页设计师和开发者往往可能会花上大半天的时间。不过幸运的是,现在的网页设计师和开发人员已经开始共享HTML5,Bootstrap和CSS3中的免费网页模板资源。鉴于网站模板的灵活性和强大的功能,现在广大设计师和开发者对html5网站的实际需求日益增长。为了造福大众,Mockplus的小伙伴整理了2018年最..._html欢迎页面

计算机二级 考试科目,2018全国计算机等级考试调整,一、二级都增加了考试科目...-程序员宅基地

文章浏览阅读282次。原标题:2018全国计算机等级考试调整,一、二级都增加了考试科目全国计算机等级考试将于9月15-17日举行。在备考的最后冲刺阶段,小编为大家整理了今年新公布的全国计算机等级考试调整方案,希望对备考的小伙伴有所帮助,快随小编往下看吧!从2018年3月开始,全国计算机等级考试实施2018版考试大纲,并按新体系开考各个考试级别。具体调整内容如下:一、考试级别及科目1.一级新增“网络安全素质教育”科目(代..._计算机二级增报科目什么意思

conan简单使用_apt install conan-程序员宅基地

文章浏览阅读240次。conan简单使用。_apt install conan